Fouling Kontrol Boyalarının Servis Durumundaki Gemi Performansı Üzerine Etkilerinin Tahmini için Rasyonel bir Yöntem
Yıl 2018,
Sayı: 213, 5 - 36, 31.10.2018
M. Atlar
İ.a. Yeginbayeva
S. Turkmen
Y.k. Demirel
A. Carchen
A. Marino
D. Williams
Öz
Bu çalışma laboratuvar ölçümleri ve gemi performansı tahmini arasında ilişki kuran, son 20 yıldır gerçekleştirilen çalışmaları değerlendirmekte ve yine bu amaç için rasyonel bir yöntem sunmaktadır. Bu yöntem günümüzdeki modern fouling control sistemlerinin gemi üzerindeki performanslarının tahmini için kullanılan deneysel ve sayısal yöntemlerin bir kombinasyonudur. Burada “rasyonel” kelimesi tekne (ve pervane) koşullarını ve gemi boya sistemlerinin bu koşullar altında değerlendirilmesi anlamını taşımaktadır. Önerilen yaklaşım karmaşık gemi performansı problemi için tam bir çözüm sunmaktadır. Bu yöntem günümüz modern boya sistemlerinin genel özelliklerini, bahsi geçen deneysel ve modern sayısal yöntemlerin yardımıyla değerlendirdiği için “rasyonel” olarak tanımlanmaktadır. Önerilen yöntem genel kapsamlı olup herhangi bir gemi tipine ve gemi üzerinde bulunan boya sistemine uygulanabileceği gibi pasif direnç düşürücü sistemlerin değerlendirmesi icin de kullanılabilir. Bu yöntem gemi üzerindeki farklı yüzey koşullarını temsil eden düz levhalar kullanılarak elde edilen deneysel veriler ve bu verilerin gerçek gemi ölçeğine ekstrapolasyonunu içermektedir. Fakat gemi ölçeğinde daha gerçekçi ve direkt olarak performans tahmini için, kullanılan ekstrapolasyon prosedürü yerine Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi de kullanılabilmektedir. Bu yöntem özellikle yüzey kirliliği (fouling) dolayısıyla bozulan tekne yüzeyinin modellenmesinde kullanılmaktadır. Bu yöntemi kullanmak icin de deneysel veriler gereklidir. Önerilen yöntemin gerçekçiliği ve gücü “servis durumundaki” tekne yüzeylerinin etkilerini temsil etmesi ve son modern deneysel yöntem ve verilerin kullanılıyor olmasıdır. Bu yöntem araştırmacılara iki tahmin olasılığı sunmaktadır; pratik ve hızlı perfromans tahmini için ekstrapolasyon, ikincisi ise HAD metodu kullanılma olanağıdır. Bu yöntem sayesinde HAD methodu kullanma olasılığı, detaylı yüzey pürüzlülüklerinin fiziksel olarak modellenmesi zorluğu bariyerini de aşabilmektedir. Önerilen yöntemin doğrulanması için bahsi geçen gemi performansı gözlemi ve analizi sistemi kullanılarak tam-ölçekte gemi verilerinin toplanması gerekmektedir. Bu sistem gemi boyalarının yüzey kirliliği durumundaki etkilerinin değerlendirilmesi için özel olarak geliştirilmektedir.
Kaynakça
- Almeida, E., Diamantino, T.C. and de Sousa, O. (2007) Marine Paints: The Particular Case of Antifouling Paints, Progress in Organic Coatings, 59 (1), pp. 2-20.
Anderson, C., Atlar, M., Callow, M., Candries, M. and Townsin, R.L. (2003) The Development of Foul-Release Coatings for Seagoing Vessels, Journal of Marine Design and Operations, No. B4, pp. 11-23.
Atlar, M. (2011) Recent Upgrading of Marine Testing Facilities at Newcastle University, Proceedings of the 2nd International Conference on Advanced Model Measurement Technology for EU Maritime Industry (AMT'11). Newcastle Upon Tyne
Atlar, M., Ünal, B., Ünal, U. O., Politis, G., Martinelli, E., Galli, G., Davies, C. & Williams, D. (2013a) An experimental investigation of the frictional drag characteristics of nanostructured and fluorinated fouling-release coatings using an axisymmetric body. Biofouling, 29, 39-52.
Atlar, M., Aktas, B., Sampson, R., Seo, K.C., Viola, M.I., Fitzsimmons P., Fetherstonehaug, C. (2013b) A
multi-purpose marine science and technology research vessel for full-scale observations and measurements. 3rd International conference on advanced model measurement technology for the maritime industry (AMT’13), September, Gdansk.
Atlar, M., Bashir, M., Turkmen, S., Yeginbayeva, I., Carchen, A. and Politis, G. ( 2015) Design, Manufacture and Operation of a Strut System Deployed on a Research Catamaran to Collect Samples of Dynamically Grown Biofilms In-Service, Proceedings of the 4th International Conference on Advanced Model Measurement Technology for Maritime Industry (AMT'15). Istanbul, Turkey.
Atlar, M., Glover, E.J., Candries, M., Mutton, R., Anderson, C.D. (2002) The effect of a Foul Release coating on propeller performance, Conference Proceedings Environmental Sustainability (ENSUS). University of Newcastle.
BMT Smart (2017) Smarter operations. http://www.bmtsmart.com/
Callow, M.E. and Callow, J.A. (2002) Marine Biofouling: A Sticky Problem, Biologist, 49(1), pp. 1-5.
Candries, M. (2001) Drag and Boundary Layer On Antifouling Paint. PhD thesis. University of Newcastle-Upon Tyne.
Candries, M., Atlar, M., (2003) On the Drag and Roughness Characteristics of Antifoulings, International Journal of Maritime Engineering, RINA, Vol. 145 A2.
Candries, M., Atlar, M., Mesbahi, E. and Pazouki, K. (2003) The Measurement of the Drag Characteristics of Tin-Free Self-polishing Co-polymers and Fouling Release Coatings Using a Rotor Apparatus, Biofouling, 19 (Supplement), pp. 27-36.
Carchen, A., Pazouki, K., and Atlar, M., (2017a) Development of an Online Ship Performance Monitoring System Dedicated for Biofouling and Anti-Fouling Coating Analysis". Hull Performance and Insight Conference, HullPIC, Ulrichshusen, De.
Carchen, A., Turkmen, S. Pazouki, K., Murphy, A., Aktas, B. and Atlar, M., (2017b) Uncertainty analysis of full-scale ship performance monitoring onboard the Princess Royal. Proceedings of the 5th International Conference on Advanced Model Measurement Technology for Maritime Industry (AMT'15) Glasgow, UK.
CASPER (2017) CASPER, the power for your sip-mile, http://www.propulsiondynamics.net/index.html
Chambers, L.D., Stokes, K.R., Walsh, F.C. and Wood, R.J.K. (2006) Modern approaches to marine antifouling coatings, Surface and Coatings Technology, 201(6), pp. 3642-3652.
Demirel, Y.K. (2015) Modelling the roughness effects of marine coatings and biofouling on ship frictional resistance, PhD Thesis, Department of Naval Architecture, Ocean and Marine Engineering. University of Strathclyde.
Demirel, Y.K., Turan, O., Incecik, A., (2016) Predicting the effect of biofouling on ship resistance using CFD. Applied Ocean Research 62, 100-118.
Dürr, S. and Thomason, J.C. (2010) Biofouling. 1st edn. Blackwell Publishing Ltd.
ENIRAM (2007) “Maximizing the efficiency of the marine industry”, https://www.eniram.fi/
Granville P. S. (1958) The frictional resistance and turbulent boundary layer of rough surfaces. Journal of Ship Research. 2:52-74.
Granville, P.S. (1987) Three Indirect Methods for the Drag Characterization of Arbitrarily Rough Surfaces on Flat Plates, Journal of Ship Research, 31, pp. 70-77.
Hasselaar, T. W.F. (2011) An investigation into the development of an advanced ship performance monitoring and analysis system, PhD Thesis, Newcastle University.
Hellio, C. and Yebra, D. (2009) Advances in Marine Antifouling Coatings and Technologies. Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK: Woodhead Publishing Ltd.
IMO (2009) Second IMO (International Maritime Organization) GHG Study. London. [Online]. Available at: http://www.imo.org/en/OurWork/environment/pollutionprevention/airpollution/pages/greenhouse-gas-study-2009.aspx.
ISO (2016) ISO 19030-1:2016 Ships and marine technology -- Measurement of changes in hull and propeller performance -- Part 1: General principles, https://www.iso.org/standard/63774.html
Intertrac (2017) https://www.international-marine.com/in-focus/digital-solutions
ITTC (2014) Analysis of Speed/Power Trial Data, Recommended Procedures and Guidelines: Full Scale Measurements.
Munk, T. (2006) Evaluating Hull coatings for precise impact on vessel performance, Paint and Coatings, Expo Tampa PACE2006 , Florida USA.
Naval Ships' Technical Manual (2002) Waterborne underwater hull cleaning of navy ships. S9086-CQ-STM-010/CH-081R5. Naval Sea Systems Command. 2002.
Patel, V. C. (1998) Perspective: Flow at high Reynolds number and over rough surfaces—Achilles heel of CFD. Journal of Fluids Engineering, 120, 434-444.
Politis, G., Atlar, M., Kidd, B. and Stenson, P. (2013) A Multipurpose Flume for the Evauation of Hull Coatings', Proceedings of the 3rd International Conference on Advanced Model Measurement Technology for the Maritime Industry (AMT'13). Gdansk, Poland.
Schultz, M.P. (, 2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23 (5), 331-341.
Schultz, M.P. and Flack, K.A. (2013) Reynolds-Number Scaling of Turbulent Channel Flow', Physics of Fluids, 25(025104), pp. 1-13.
Schultz, M.P., Flack, K., (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. Journal of Fluid Mechanics 580, 381-405.
SEAFRONT (2014-2017) Synergistic Fouling Control Technologies. Available at: http://seafront-project.eu/.
Seo, K-C, Atlar, M. and Goo B. (2016) A study on the hydrodynamic effect of biofouling on marine propeller”, Journal of the Korean Society of Marine Environment & Safety, V 22, No1, 123-128.
Taniguchi, K. and Tamura, K. (1966) On a new method of correction for wind resistance relating to the analysis of speed trial results, 11th ITTC.
TARGETS, (2011) Targeted Advanced Research for Global Efficiency of Transportation Shipping-TARGETS, EU-FP7 Collaborative Project, SST.2010-RTD-1-266008.
Yeginbayeva, I. (2017) An investigation into hydrodynamic performance of marine coatings “in-service” conditions, PhD Thesis, Newcastle University.
Yeginbayeva, I., Atlar, M., Turkmen, S., Kidd, B. and Finnie, A.A. (2016) Investigating The Impact Of Surface Condition On The Frictional Resistance Of Fouling Control Coating Technologies, The 31st Symposium On Naval Hydrodynamics (SNH). Monterey, USA, 11-16 September.
Zhou, F. (2015) Antifouling Surfaces and Materials: from land to marine environment. Berlin: Springer.